fisikaonline

Melayani siapa saja untuk belajar fisika kapan saja dan dimana saja


Mekanika Fluida: materi, rumus, soal, penyelesaian soal serta aplikasinya dalam kehidupan sehari-hari

FLUIDA

Fluida statis
Fluida adalah zat yang dapat mengalir, sehingga yang termasuk fluida adalah zat cair dan gas. Sahabat fisioner, dalam bab ini kita akan mempelajari statika fluida. Dalam  statika fluida  anda mempelajari fluida yang ada dalam keadaan diam (tidak bergerak). Fluida yang diam disebut fluida statis. Jika yang diamati adalah zat cair disebut hidrostatis. Apakah sahabat fisioner sudah siap? Ayo kita mulai!

Fluida Statis

1. Tekanan

Di SMP anda telah mempelajari tekanan, yang didefinisikan sebagai gaya normal (tegak lurus) yang bekerja pada suatu bidang dibagi dengan luas bidang tersbut.

Satuan SI untuk tekanan adalah Pascal (disingkat Pa) untuk memberi penghargaan kepada Blaise Pascal, penemu hukum Pascal. Tentu saja 1 Pa = 1 Nm-2Untuk keperluan cuaca digunakan satuan atmosfer (atm), cmHg atau mmHg, dan milibar (mb).
1 mb = 0,001; 1 bar = 105 Pa
1 atm = 76 cmHg = 1, 01 x 105 Pa = 1, 01 bar
Untuk menghormati Torricelli, fisikawan italia penemu barometer, ditetapkan satuan tekanan dalam torr,
1 torr = 1 mmHg

a. Penurunan rumus tekanan Hidrostatis

Gaya gravitasi menyebabkan zat cair dalam suatu wadah selalu tertarik ke bawah. Makin tinggi zat cair dalam wadah, makin berat zat cair itu, sehingga makin besar juga tekanan zat cair pada dasar wadahnya. Tekanan zat cair yang hanya disebabkan oleh beratnya sendiri disebut tekanan hidrostatis. 
Bayangkan luas penampang persegi panjang (luas yang diarsir), p x l, yang terletak pada kedalaman h di bawah permukaan zat cair (massa jenis = r), seperti tampak pada gambar di samping. Volume zat cair di dalam balok = p x l x h, sehingga massa zat cair di dalam balok adalah
Berat zat cair di dalam balok,
Tekanan zat cair di sembarang titik pada luas bidang yang diarsir adalah

Jadi, tekanan hidrostatis zat cair (ph) dengan massa jenis r pada ketinggian h dirumuskan dengan

b.  Tekanan Gauge

Tekanan gauge adalah selisih antara tekanan yang tidak diketahui dengan tekanan atmosfer (tekanan udara luar). Nilai tekanan yang diukur oleh alat pengukur tekanan adalah tekanan gauge. Adapun tekanan sesungguhnya disebut denga tekanan mutlak.
Tekanan mutlak = tekanan gauge + tekanan atmosfer
p = pgauge + patm
Sebagai contoh, sebuah ban yang mengandung udara dengan tekanan gauge 2 atm (diukur oleh alat ukur) memiliki tekanan mutlak kira-kira 3 atm. Ini karena tekanan atmosfer pada permukaan laut kira-kira 1 atm.

c. Tekanan mutlak pada suatu kedalaman zat cair

Telah disebutkan sebelumnya bahwa pada lapisan atas zat cair bekerja tekanan atmosfer. Atmosfer adalah lapisan udara yang menyelimuti bumi. Pada tiap bagian atmosfer bekerja gaya tarik gravitasi. Makin ke bawah, makin berat lapisan udara yang diatasnya. Oleh karena itu, makin rendah suatu tempat, makin tinggi tekanan atmosfernya. Di permukaan laut, tekanan atmosfer bernilai kira-kira 1 atm atau 1,01 x 105 Pa.

2.      Hukum pokok Hidrostatika


Perhatikan gambar di atas. Gambar di atas memperlihatkan sebuah bejana berhubungan yang didisi dengan fluida, misalnya air. Anda dapat melihat bahwa tinggi permukaan air di setiap tabung adalah sama, walaupun bentuk setiap tabung berbeda.
Bagaimanakah tekanan yang dialami oleh suatu titik di setiap tabung? Samakah tekanan total di titik A, B, C dan D yang segaris?

Hukum pokok hidrostatika berbunyi:
Semua titik yang terletak pada bidang datar yang sama di dalam zat cair yang sejenis memiliki tekanan (mutlak) yang sama.

Jadi, walaupun bentuk penampang tabung berbeda, besarnya tekanan total di titik A, B, C, dan D adalah sama. Persamaan hukum pokok hidrostatika dapat diturunkan dengan memperhatikan gambar berikut.
Misalkan pada suatu bejana berhubungan dimasukan dua jenis fluida yang massa jenisnya berbeda, yaitu r1 dan r2. Jika diukur dari bidang batas terendah antara fluida 1 dan fluida 2, yaitu titik B dan titik A, fluida 2 memiliki ketinggian h2 dan fluida 1 memiliki ketinggian h1. Tekanan total di titik A dan di titik B adalah sama. Menurut persamaan pokok hidrostatis, besarnya tekanan di titik A dan titik B bergantung pada massa jenis fluida dan ketinggian fluida di dalam tabung. Secara matematis, persamaannya dapat di tulis sebagai berikut.

3. Hukum Pascal

Di SMP anda telah melakukan percobaan seperti yang ditunjukkan pada gambar di samping. Ketika anda memeras ujung kantong plastik berisi air yang memiliki banyak lubang, air memancar dari setiap lubang dengan sama kuat. Hasil percobaan inilah yang diamati Blaise Pascal yang kemudian menyimpulkannya dalam hukum Pascal yang berbunyi:
Tekanan yang diberikan pada zat cair dalam ruang tertutup diteruskan sama besar ke segala arah. 

Sebuah terapan sederhana dari prinsip hukum Pascal adalah dongkrak hidrolik.
Hukum Pascal
Skema dari prinsip kerja dongkrak hidrolik ditunjukkan seperti pada gambar berikut:
Dongkrak hidrolik terdiri dari bejana dengan dua kaki (kaki 1 dan kaki 2) yang masing-masing diberi penghisap. Penghisap 1 memiliki luas penampang A1 (lebih besar) dan penghisap 2 memiliki luas penampang A2 (lebih kecil). Bejana diisi dengan ciran (misalnya oli).
Jika penghisap 2 anda tekan dengan gaya F2, zat cair akan menekan penghisap 2 ke atas dengan gaya pA2 sehingga terjadi keseimbangan pada penghisap 2 dan berlaku
Sesuai hukum pascal bahwa tekanan pada zat cair dalam ruang tertutup diteruskan sama besar ke segala arah, maka pada penghisap 1 bekerja gaya ke atas pA1. Gaya yang seimbang dengan ini adalah F1 yang bekerja pada penghisap 1 dengan arah ke bawah.
Dengan menyamakan ruas kanan (**) dan (*) kita peroleh
Persamaan di atas menyatakan bahwa perbandingan gaya sama dengan perbandingan luas penghisap
Penampang penghisap dongkrak hidrolik berbentuk silinder dengan diameter (garis tengah) yang diketahui. Misalnya, penghisap 1  berdiameter D1 dan penghisap 2 berdiameter D2, maka
Persamaan di atas menyatakan bahwa perbandingan gaya sama dengan perbandingan kuadrat diameter. Ini berarti jika diameter penghisap 2 adalah 10 x diameter penghisap 1, gaya tekan 100 N pada penghisap 1 dapat mengangkat mobil yang memiliki berat (10)2 x 100 N = 10.000 N pada penghisap 2.

4.      Hukum Archimedes

Hukum Archimedes
Jika kita celupkan batu ke dalam sebuah bejana berisi air, permukaan air akan naik. Ini karena batu menggantikan volume air. Jika batu kita celupkan pada bejana yang penuh berisi air, sebagian air akan tumpah dari bejana. Volume air tumpah sama dengan volume batu yang menggantikan air.
Jadi, suatu benda yang dicelupkan seluruhnya dalam zat cair selalu menggantikan volume zat cair yang sama dengan volume benda itu sendiri.
Dengan pemahaman di atas, disertai dengan kaitan antara gaya apung yang dirasakannya dengan volume zat cair yang dipindahkan benda, Archimedes menemukan hukumnya, yaitu hukum Archimedes yang berbunyi:
Gaya apung yang bekerja pada suatu benda yang dicelupkan sebagaian atau seluruhnya ke dalam suatu fluida sama dengan berat fluida yang dipindahkan oleh benda tersebut.

a.  Penurunan Matematis Hukum Archimedes

Apakah penyebab munculnya gaya apung yang dikerjakan oleh suatu fluida kepada benda yang tercelup dalam fluida?
Ternyata gaya apung ini muncul karena selisih antara gaya hidrostatis yang dikerjakan fluida terhadap permukaan bawah dengan permukaan atas benda. Kita akan menurunkan rumus gaya apung Fa secara teoritis berdasarakan pemahaman tekanan hidrostatis yang telah anda pelajari sebelumnya. Seperti telah anda ketahui bahwa gaya apung terjadi akibat konsekuensi dari tekanan hidrostatis yang makin meningkat dengan kedalaman. Dengan kata lain, gaya apung terjadi karena makin dalam zat cair, makin besar tekanan hidrostatisnya. Ini menyebabkan tekanan pada bagian bawah benda lebih besar daripada tekanan pada bagian atasnya.

b.  Mengapung, tenggelam, dan melayang

Masih ingatkah anda dengan peristiwa mengapung, tenggelam, dan melayang ketika suatu benda dicelupkan dalam zat cair?
Untuk mengingatnya kembali, perhatikan ilustrasi pada gambar berikut!
Ilustrasi pada gambar di atas menunjukkan bahwa apakah suatu benda mengapung, tenggelam atau melayang hanya ditentukan oleh massa jenis rata-rata benda dan massa jenis zat cair. Jika massa jenis rata-rata benda lebih kecil daripada massa jenis zat cair, benda akan mengapung di permukaan zat cair. Jika massa jenis rata-rata benda lebih besar daripada massa jenis zat cair, benda akan tenggelam di dasar wadah zat cair. Jika massa jenis rata-rata benda sama dengan massa jenis zat cair, benda akan melayang dalam zat cair di antara permukaan dan dasar wadah zat cair. Jadi,
Peristiwa mengapung, tenggelam, dan melayang juga dapat dijelaskan berdasarkan konsep gaya apung dan berat benda. Pada suatu benda yang tercelup sebagian atau seluruhnya dalam zat cair, bekerja gaya apung (Fa). Dengan demikian, pada benda yang tercelup dalam zat cair bekerja dua buah gaya: gaya berat w dan gaya apung Fa, gambar berikut.

B.Tegangan Permukaan Zat Cair dan Viskositas Fluida

Tegangan Permuukaan

1.  Apakah Tegangan Permukaan Zat Cair Itu?

Tegangan permukaan zat cair adalah kecenderungan permukaan zat cair untuk menegang sehingga permukaannya seperti ditutupi oleh suatu lapisan tipis.

2. Mengapa Terjadi Tegangan Permukaan pada Zat Cair?

Di SMP anda telah mempelajari bahwa antara partikel-partikel sejenis terjadi gaya tarik menarik yang disebut gaya kohesi. A mewakili partikel di dalam zat cair, sedangkan B mewakili partikel di permukaan zat cair (gambar). Partikel A ditarik oleh gaya yang sama besar ke segala arah oleh partikel-partikel di dekatnya. Sebagai hasilnya, resultan gaya pada partikel-partikel di dalam zat cair (diwakili oleh A) adalah sama dengan nol, dan di dalam zat cair tidak ada tegangan permukaan.
Bagaimana dengan partikel-partikel di permukaan zat cair (diwakili oleh B)?
Partikel B ditarik oleh partikel-partikel yang ada di samping dan di bawahnya dengan gaya-gaya yang sama besar, tetapi B tidak ditarik oleh partikel-pertikel di atasnya (karena di atas B tidak ada partikel zat cair). Sebagai hasilnya, terdapat resultan gaya berarah ke bawah yang bekrja pada permukaan zat cair. Resultan gaya ini menyebabkan lapisan-lapisan atas seakan-akan tertutup oleh hamparan selaput elastis yang ketat. Selaput ini cenderung menyusut sekuat mungkin. Oleh karena itu, sejumlah tertentu cairan cenderung mengambil bentuk dengan permukaan sesempit mungkin. Inilah kita sebut dengan tegangan permukaan. 
Akibat tegangan permukaan ini, setetes cairan cenderung berbentuk bola. Karena dalam bentuk bola itu, cairan mendapatkan daerah permukaan yang tersempit. Inilah yang menyebabkan tetes air yang jatuh dari kran dan tetes-tetes embun yang jatuh pada sarang laba-laba berbentuk bola. 
Tarikan pada permukaan cairan membentuk semacam kulit penutup yang tipis. Nyamuk dapat berjalan di atas air karena berat nyamuk dapat diatasi oleh kulit ini. Peristiwa yang sama terjadi pada klip kertas yang perlahan-lahan kita letakkan di permukaan air. Ketika anda menambahkan detergen atau larutan sabun ke dalam air, anda menurunkan tegangan permukaan air. Sebagai hasilnya, berat klip kertas tidak dapat lagi ditopang oleh tegangan permukaan air, dan klip kertas akan tenggelam.

3.      Formulasi Tegangan Permukaan

Gambar di atas menunjukkan contoh lain dari tegangan permukaan. Seutas kawat dibengkokan hingga berbentuk U, dan seutas kawat kedua dapat meluncur pada kaki-kaki kawat U. Ketika alat ini dicelupkan dalam larutan sabun dan dikeluarkan, kawat kedua (jika beratnya tidak begitu besar) akan tertarik ke atas. Untuk menahan kawat ini agar tidak meluncur ke atas, kita perlu mengerjakan gaya T ke bawah. Total gaya ke bawah yang menahan kawat kedua adalah F = T + w.
Kita misalkan panjang kawat kedua adalah l. Larutan sabun yang menyentuh kawat kedua memiliki dua permukaan, sehingga gaya tegangan permukaan bekerja sepanjang 2l panjang permukaan. Tegangan permukaan (g) dalam larutan sabun didefinisikan sebagai perbandingan antara gaya tegangan permukaan (F) dan panjang permukaan (d) di mana gaya itu bekerja. Secara matematis kita tulis

Perhatikan bahwa tegangan permukaan bukanlah besaran gaya, tetapi merupakan gaya dibagi dengan panjang, sehingga satuan tegangan permukaan adalah N/m. Tabel berikut mendaftar tegangan permukaan beberapa zat cair yang umum dijumpai dalam keseharian.

Zat Cair yang Kontak dengan Udara
Suhu (0C)
Tegangan Permukaan (x 10-3 N/m)
Air
0
75,6
Air
25
72,0
Air
80
62,6
Etil Alkohol
20
22,8
Aseton
20
23,7
Gliserin
20
63,4
Raksa
20
43,5

4. Penerapan Tegangan Permukaan dalam Kehidupan Sehari-hari

Tegangan permukaan air berhubungan dengan kemampuan air membasahi benda. Makin kecil tegangan permukaan air, makin baik kemampuan air untuk membasahi benda, dan ini berarti kotoran-kotoran pada benda lebih mudah larut dalam air. Prinsip inilah yang banyak dimanfaatkan dalam kehidupan fisika sehari-hari.
1. Mengapa mencuci dengan air panas lebih mudah dan menghasilkan cucian yang lebih bersih?
Tegangan permukaan air dipengaruhi oleh suhu. Makin tinggi suhu, makin kecil tegangan permukaan air (lihat tabel di atas), dan ini berarti makin baik kemampuan air untuk membasahi benda. Karena itu, mencuci dengan air panas menyebabkan kotoran pada pakaian lebih mudah larut dan cucian menjadi lebih bersih.
2.   Detergen sintesis modern
Banyak kotoran pakaian yang tidak larut di dalam air segar, tetapi larut di dalam air yang diberi detergen. Detergen memperkecil tegangan permukaan air sehingga air mampu mencuci dengan bersih.
3.   Itik dapat berenang di air
Itik dapat berenang di air karena bulu-bulunya tidak basah oleh air. Jika air diberi detergen, tegangan permukaan air berkurang dan itik yang berusaha berenang bulu-bulunya akan basah oleh air. Akibatnya, itik akan tenggelam.
4.   Antiseptik
Antiseptik memiliki tegangan permukaan yang rendah sehingga antiseptik dapat membasahi seluruh luka.

5.  Viskositas Fluida

a. Hukum Stokes untuk Fluida Kental 

    Dalam suatu fluida ideal (fluida tidak kental) tidak ada viskositas (kekentalan) yang menghambat lapisan-lapisan fluida ketika lapisan-lapisan tersebut menggeser satu di atas lainnya. Dalam suatu pipa dengan luas penampang seragam (serbasama), setiap lapisan fluida ideal bergerak dengan kecepatan yang sama; demikian juga lapisan yang dekat dengan dinding pipa seperti pada gambar a di samping.
Ketika viskositas (kekentalan) hadir, kecepatan lapisan-lapisan fluida tidak seluruhnya sama, seperti diilustrasikan pada gambar b di atas. Lapisan fluida yang terdekat dengan dinding pipa bahkan sama sekali tidak bergerak (v = 0), sedangkan lapisan fluida pada pusat pipa memiliki kecepatan terbesar.
Viskositas dalam aliran fluida kental sama saja dengan gesekan pada gerak benda padat. Untuk fluida ideal, viskositas h = 0, sehingga kita selalu menganggap bahwa benda yang bergerak dalam fluida ideal tidak mengalami gesekan yang disebabkan oleh fluida. Akan tetapi, bila benda tersebut bergerak dengan kelajuan tertentu dalam fluida kental, gerak benda tersebut akan dihambat oleh gaya gesekan fluida pada benda tersebut. Besar gaya gesekan fluida telah dirumuskan oleh

b. Kecapatan Terminal

Perhatikan sebuah kelereng yang dilepaskan jatuh bebas dalam suatu fluida kental. Jika hanya gaya gravitasi yang bekerja pada kelereng, kelereng akan bergerak dipercepat dengan percepatan sama dengan percepatan gravitasi g. Ini berarti, jarak antara dua kedudukan kelereng dalam selang waktu yang sama haruslah makin besar. Hasil eksperimen yang ditunjukkan pada gambar di atas menyatakan hal yang berbeda. Mula-mula jarak antara kedua kelereng dalam selang waktu yang sama makin besar, tetapi mulai saat tertentu, jarak antara dua kedudukan kelereng dalam selang waktu yang sama adalah sama besar. Dari hasil eksperimen ini disimpulkan bahwa suatu benda yang dijatuhkan bebas dalam suatu fluida kental, kecepatannya makin membesar sampai mencapai suatu kecepatan terbesar yang tetap. Kecepatan terbesar yang tetap ini dinamakan kecepatan terminal.
Pada suatu benda yang jatuh bebas dalam fluida kental, selama geraknya, pada benda tersebut bekerja tiga buah gaya, yaitu gaya berat, w = m.g, gaya ke atas yang dikerjakan fluida Fa, dan gesekan yang dikerjakan fluida Ff .
Seperti telah dinyatakan, benda kan bergerak makin cepat sampai mencapai kecepatan terminal konstan. Pada saat kecepatan terminal vT tercapai, gaya-gaya yang bekerja pada benda adalah seimbang:

Fluida Dinamis

Fluida Dinamis
Dalam dinamika fluida anda mempelajari tentang fluida yang mengalir (bergerak). Fluida yang mengalir disebut fluida dinamis. Jika yang diamati adalah zat cair, disebut hidrodinamika.

1.   Apa yang Dimaksud dengan Fluida Ideal?

Ciri-ciri umum fluida ideal:
a. Aliran fluida dapat merupakan aliran tunak (steady) atau tidak tunak (non-steady). Jika kecepatan v di suatu titik adalah konstan terhadap waktu, aliran fluida dikatakan tunak. Contoh aliran tunak adalah arus air yang mengalir dengan tenang (kelajuan aliran rendah). Pada aliran tak tunak, kecepatan v di suatu titik tidak konstan terhadap waktu. Contoh aliran tak tunak adalah gelombang pasang air laut.
b. Aliran fluida dapat termampatkan (compressible) atau tak termampatkan (incompressible). Jika fluida yang mengalir tidak mengalami perubahan volume (atau massa jenis) ketika ditekan, aliran fluida dikatakan tak termampatkan. Hampir semua zat cair yang bergerak (mengalir) dianggap sebagai aliran tak termampatkan . Bahkan, gas yang memiliki sifat sangat termampatkan, pada kondisi tertentu dapat mengalami perubahan massa jenis yang dapat diabaikan. Pada kondisi ini aliran gas dianggap sebagai aliran tak termampatkan. Sebagai contoh adalah pada penerbangan dengan kelajuan yang jauh lebih kecil daripada kelajuan bunyi di udara (340 m/s). Gerak relatif udara terhadap sayap-sayap pesawat terbang dapat dianggap sebagai aliran fluida yang termampatkan.
c. Aliran fluida dapat merupakan aliran kental (viscous) atau tak kental (non-viscous). Kekentalan aliran fluida mirip dengan gesekan permukaan pada gerak benda padat. Pada kasus tertentu, seperti pelumasan pada mesin mobil, kekentalan memegang peranan sangat penting. Akan tetapi, dalam banyak kasus kekentalan dapat diabaikan.
d. Aliran fluida dapat merupakan aliran garis arus (streamline) atau aliran turbulen. Untuk aliran tunak, kecepatan fluida di suatu titik yang sama pada suatu garis arus, misalnya titik A pada gambar berikut, tidak berubah terhadap waktu. Artinya, tiap partikel yang tiba di A akan terus lewat dengan kelajuan dan arah yang sama. Ini juga berlaku untuk titik B dan C.
Jadi, tiap partikel yang tiba di A akan selalu menempuh lintasan yang menghubungkan A, B, dan C. Garis arus disebut juga aliran berlapis (aliran laminar = laminar flow). Kecepatan partikel fluida di tiap titik pada garis arus searah dengan garis singgung di titik itu. Dengan demikian, garis arus tidak pernah berpotongan.
Ketika melebihi suatu kelajuan tertentu, aliran fluida menjadi turbulen. Aliran turbulen ditandai oleh adanya aliran berputar. Ada partikel-partikel yang memiliki arah gerak berbeda bahkan, berlawanan dengan arah gerak keseluruhan fluida. Untuk mengetahui apakah suatu aliran zat cair merupakan garis arus atau turbulen, anda cukup menjatuhkan sedikit tinta atau pewarna ke dalam zat cair itu. Jika tinta menempuh lintasan yang lurus atau melengkung tetapi tidak berputar-putar membentuk pusaran, aliran fluida itu berupa garis arus. Akan tetapi, bila tinta itu kemudian mengalir secara berputar-putar dan akhirnya menyebar, aliran fluida itu termasuk turbulen. Nah, fluida yang akan anda pelajari dalam bab ini dipandang sebagai fluida ideal, yaitu fluida yang tidak tunaktak termampatkantak kental, dan streamline (garis arus).

2. Persamaan Kontinuitas

a. Pengertian  Debit

Debit
Debit adalah besaran yang menyatakan volume fluida yang mengalir melalui suatu penampang tertentu dalam satuan waktu tertentu.

b. Penurunan Persamaan Kontinuitas

Persamaan Kontinuitas
Telusurilah sebuah sungai atau parit yang memiliki bagian yang lebar dan yang sempit. Perhatikanlah aliran sungai pada bagian yang lebar dan yang sempit itu. Pada bagian manakah aliran air makin deras? Pasti yang sempit alirannya lebih deras.
Jika suatu fluida mengalir dengan aliran tunak, maka massa fluida yang masuk ke salah satu ujung pipa haruslah sama dengan massa fluida yang keluar dari ujung pipa yang lain selama selang waktu yang sama. Hal ini berlaku karena pada aliran tunak tidak ada fluida yang dapat meninggalkan pipa melalui dinding-dinding pipa (garis arus tidak dapat saling berpotongan).
Tinjaulah suatu fluida yang mengalir dengan aliran tunak dan perhatikanlah bagian 1 dan 2 dari pipa (gambar di atas). Misalkan bahwa:

3. Hukum Bernoulli

4. Penerapan Hukum Bernouli

Hukum Bernoulli
    Gaya Angkat Pesawat terbang
Dengan memperhatikan cara burung terbang, orang kemudian berusaha menirunya untuk mewujudkan impian manusia terbang tinggi di angkasa. Tanggal 17 Desember 1903, di Kitty Hawk, North Carolina, Amerika Serikat, Wright bersaudara berhasil menerbangkan pesawat terbang bermesin pertama di dunia. Keduanya berhasil terbang selama 59 detik dan menempuh jarak 300 meter. Hanya beberapa puluh tahun setelah itu, tepatnya 1964, dunia telah mengenal pesawat terbang intai strategis high altitude SR-71 Blackbird dengan tiga kali kecepatan suara dan dapat menempuh jarak 4830 km.
Pesawat terbang memiliki bentuk sayap mirip sayap burung, yaitu melengkung dan lebih tebal di bagian depan daripada di bagian belakangnya. Bentuk sayap seperti itu dinamakan aerofoil. Tidak seperti sayap burung, sayap pesawat tidak dapat dikepak-kepakkan. Karena itu, udara harus dipertahankan mengalir melalui kedua sayap pesawat terbang. Ini dilakukan oleh mesin pesawat yang menggerakkan maju pesawat menyongsong udara. Mesin pesawat lama menggunakan mesin baling-baling, sedangkan yang modern menggunakan mesin jet.
Bentuk aerofil pesawat terbang menyebabkan garis arus seperti gambar di atas. Garis arus pada sisi bagian atas lebih rapat daripada sisi bagian bawah, yang berarti kelajuan alir udara pada sisi bagian atas pesawat (v2) lebih besar daripada sisi bagian bawah sayap (v1). Sesuai dengan asas Bernoulli, tekanan pada sisi bagian atas (p2) lebih kecil dari pada sisi bagian bawah (p2) karena kelajuan udaranya lebih besar. Beda tekanan p1 – p2 menghasilkan gaya angkat sebesar:

Tips dan Trik Pembahasan Soal

http://fisikakontekstual.net/fluida-statis/

No comments:

Post a Comment